

Thermopeaking from power plant releases in regulated streams

A. Siviglia, G. Zolezzi, B. Maiolini, M. Carolli, MC Bruno

Department of Civil and Environmental Engineering, University of Trento and Fondazione Mach

November 22, 2008

FROM HYDROPEAKING to THERMOPEAKING:

ALTERATION of the THERMAL REGIME

Water T upstream of the powerplant

Water T downstream to the powerplant

Streamflow downstream of the powerplant

Focus – Quantification of the thermal regime alterations and ecological effects

Research topics

- 1. Thermopeaking definition and indicators : the case study of the Adige-Noce river system
- 2. Mathematical modelling for simulating hydro-thermal peaking waves
- 3. Ecological effects on short term scale

Ongoing research

Thermopeaking: definition and indicators

Thermopeaking index

Thermopeaking index

$$P = \rho c_p QT$$
 Thermal power stream

Steady HEAT BUDGET among the 3 BRANCHES

 $THP = \left(T_{TR} - T_{NI}\right) \frac{HP - 1}{HP}$

Relationship THP-HP

Noce river catchment

River junctions Power plants Water discharge gauge \bigcirc Temperature gauge Dam Ponte Stori Cogolo upstream Cogolo Rabbies Cogolo downstream Croviana Malé / Mollaro JU Pellizzano Vermigliana Mezzocorona upstream 0 JD Mezzocorona Mezzocorona 000 SARCA downstram Noce basin AVISIO closure section

 \triangle

Hydro- and Thermo-peaking in the Noce Basin

natural junction *→* it is regulated by a natural flow regime

Hydro- and Thermo-peaking in the Noce Basin

Thermopeaking index

From monitoring to modelling

 To look for possible mitigation measures, there's the need to predict the thermal wave propagation throughout the river system (at the basin-scale)

• Development and application of a 1-D mathematical model of stream temperature dynamics

From monitoring to modelling

 To look for possible mitigation measures, there's the need to predict the thermal wave propagation throughout the river system (at the basin-scale)

• Development and application of a 1-D mathematical model of stream temperature dynamics

Formulation of the 1-D model

Hydrodvnamic equations (Mass and Momentum conservation)

$$\frac{\partial\Omega}{\partial t} + \frac{\partial Q}{\partial x} = q_l$$

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left(\beta \frac{Q^2}{\Omega} \right) + g\Omega \frac{\partial H}{\partial x} + g\Omega j = 0$$

HYPERBOLIC EQN.

WAF and Splitting procedure for simulating thermal and water peaking waves

SOURCE TERMS H_T

PRELIMINARY RESULTS: MODEL APPLICATION TO THE ADIGE RIVER (May 18 – 21, 2007)

<u>INPUT DATA</u>

Channel geometry and roughness

Upstream hydrographs

Upstream stream temperature

Atmospheric quantities

- Shortwave radiation
- Wind speed 2m above terrain
- Relative humidity
- Air temperature

MAIN OUTPUT

Propagation of stream temperature wave (from upstream ends to TSL

MEASURED TEMPERATURE AT TSL STATION

RESULTS: DISCHARGE AND TEMPERATURE

WATER DISCHARGE AT TSL

STREAM TEMPERATURE AT TSL

Risultati

Thermopeaking: short term ecological effects

F

Water temperature of the flumes from 6 am September 10 to 1:30 pm September 12

The cold thermopeaking experiment started on September 12. Drift samples were taken from 9 to 12 am every hour and every two minutes from 12:30 to the end of experiment. In all 25 drift samples per each flume were collected. Invertebrates were sorted and identified to order or family level. Diptera Chironomidae larvae dominated the comunity, followed by Diptera Simuliidae, Ephemeroptera Baetidae and Plecoptera.

In all, about 2200 invertebrates were collected during the experiment.

WARM THERMOPEAKING EXPERIMENTS

WARM THERMOPEAKING EXPERIMENTS

Ongoing Research

MONITORING

- Longer stream temperature/discharge time series
- Hyporeic stream temperature

EXPERIMENTS

- Experiments on warm thermopeaking
- Long term ecological effects induced by thermopeaking

MODELLING

- Temperature wave propagation in the hyporeic region
- Wavelet analysis of temperature variations (whole stream)
- Habitat suitability modeling including temperature effects

Thermopeaking at Mezzocorona

Warm thermopeaking

Hydro- and Thermo-peaking in the Noce Basin

No hydropeaking: T upstream= T downstream

Hydropeaking: T upstream # T downstream = thermopeaking

THE 2-STEP NUMERICAL SCHEME

STEP 1 (EXPLICIT for convection)

Finite Volume Approximate Riemann solver (Two-rarefactions e Two-shocks),

2° order extension

WAF (Weighted Average Fluxes) for source term (Toro 1999)

STEP 2 (IMPLICIT for diffusion)

Crank-Nicholson with centered derivatives

Modello numerico